Code: 20CE4701C

IV B.Tech - I Semester – Regular Examinations - DECEMBER 2023

REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS (CIVIL ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max. Marks: 70

			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	Explain in detail about the concept of	L1	CO1	10 M				
		resolution and its importance.							
	b)	Write about the Orthophoto.	L1	CO1	4 M				
	OR								
2	a)	Explain in detail about the remote sensing	L1	CO1	10 M				
		components.							
	b)	Write the advantages and disadvantages of	L1	CO1	4 M				
		Remote sensing.							
UNIT-II									
3	Wh	at is spatial data and explain basic concept of	L2	CO2	14 M				
	GIS	5?							
	OR								

4	Wr	ite a detailed note on	L2	CO2	14 M		
	i) Non spatial data analysis						
	ii) (GIS Categories					
				II			
UNIT-III							
5	a)	Discuss in detail about the Image	L3	CO3	10 M		
		Classifications.					
	b)	Why is atmospheric correction necessary in	L3	CO3	4 M		
		remote sensing? List the different					
		atmospheric correction method.					
	OR						
6	a)	Explain about Preprocessing.	L2	CO3	7 M		
	b)	Explain about Geometric correction	L2	CO3	7 M		
		methods.					
UNIT-IV							
7	-	plain the process of inputing of Raster data	L4	CO4	14 M		
		Vector data. Write briefly the process of					
	digitization by using point, polyline and						
	polygon.						
		OR					
8	a)	Describe the various types of Data	L3	CO4	7 M		
		representation in GIS.					
	b)	Advantages of Raster & Vector GIS.	L3	CO4	7 M		
UNIT-V							
9	Dis	cuss on Traffic Management.	L3	CO5	14 M		
	OR						

10	a)	Develop application of GIS in Highways.	L2	CO5	7 M
	b)	Discuss about Remote Sensing platforms	L3	CO5	7 M
		and Sensor applications in Urban studies.			